September 18, 2018 Volume 14 Issue 35

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


How do you prolong the useful life of lubricants? Stanford researchers zero in on the problem of foaming oil

Foaming oil is a core problem, whether it's in a turbine or your car.

 

 

By Andrew Myers, Stanford University

Wind turbines towering hundreds of feet over many landscapes herald a future of endless, clean energy.

But in a crucial sense, turbines remain rooted in the past: Much like with your car, their engines require lubrication to run smoothly. The question for many chemical engineers is, how do you prolong the useful life of the lubricants?

In a new study published in the journal Proceedings of the National Academy of Sciences, Vineeth Chandran Suja, a Stanford graduate student in chemical engineering, explores one of the core problems: foaming oil.

The problem, he says, is that whether it's in your car or a wind turbine, each time metal gears grind against other metals, oil gets sloshed around and mixed with air. This often results in the formation of tiny bubbles with varying lifespans. If the bubbles don't immediately burst, they soon collect into a foam, which is one of the primary mechanisms of engine decline.

The foam is harmful in a variety of ways. It degrades the lubricant and allows gears to grind. Oxygen trapped in oil foams causes the metal parts to oxidize, that is, to rust. And the foam acts like a thermal insulator, trapping harmful heat in the system. Hence, lubricant manufacturers are actively looking for ways to mitigate lubricant foaming.

To better understand the conditions that give rise to foams, the researchers, led by Gerald Fuller, professor of chemical engineering, adapted a set of techniques originally developed to study the liquid layer that lubricates the exterior of the human eye. These novel techniques enabled them to study the colorful patterns on the surface of individual oil bubbles -- a key advance from previous research, which focused on foams in the aggregate.

When Fuller and Suja zoomed in on the iridescent surface of their tiny oil bubbles, they discovered that the color patterns revealed the thickness of the bubble wall. Brighter, more vibrant colors indicated thicker walls that led to more persistent bubbles and, hence, foamier, less effective oils, says Suja, who was first author on the paper. Darker colors indicated thin-walled bubbles that would quickly pop, so the oils would last longer and provide better lubrication.

The researchers employed their new color-coding technique to determine why some motor oils tend to get foamy. Their ultimate goal was to figure out how to make longer lasting oils. In the process, they made a surprising discovery about how evaporation factors into bubble formation and foaming.

As they zoomed in, they observed that evaporation at the top of each bubble caused its surface tension to change, drawing extra oil toward the top. This additional oil made the bubble wall thicker and stronger, and prevented it from bursting. They captured video of the bubbles pulsating as tears of oil pooled at the top, then rolled down the exterior wall of the bubble only to get wicked up to the top again by evaporation. As the cycle continued, these persistent, thick-walled bubbles tended to become undesirable foams. "Learning that this whole process is driven by evaporation was a bit of an unexpected result," Fuller says.

"We don't generally think of oils as being prone to evaporation, but that's what's happening."

The researchers showed that this effect is most pronounced in blended, multi-grade oils, but virtually absent in homogenous, single-grade oils. "It turns out, if you want to reduce foaming, you want to use high-purity, single-grade oils," Fuller says.

Suja and Fuller are now pursuing two strategies to find ways to reduce or eliminate foaming. The first is to formalize their understanding of bubble formation, evaporation, and foaming with mathematical models that will allow them to simulate how pure or blended oils are likely to perform in real life. This would speed the research and discovery process for new oils. The second is to look for antifoaming additives or other ways to counteract those pulsing teardrops.

This is a fundamental study that elucidates a big problem that plagues lubrication, Fuller says. "It also points us in some interesting new directions."

Other authors include A. Kar, W. Cates, S. M. Remmert, and P. D. Savage of Shell Global Solutions (US) Inc., Houston, TX.

This work was funded by a grant from Shell.

Published September 2018

Rate this article

[How do you prolong the useful life of lubricants? Stanford researchers zero in on the problem of foaming oil]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2018 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy